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Abstract
We calculate the index of the Dirac operator defined on the q-deformed fuzzy
sphere. The index of the Dirac operator is related to its net chiral zero modes
and thus to the trace of the chirality operator. We show that for the q-deformed
fuzzy sphere, a Uq(su(2))-invariant trace of the chirality operator gives
the q-dimension of the eigenspace of the zero modes of the Dirac operator.
We also show that this q-dimension is related to the topological index of the
spinorial field as well as to the fuzzy cut-off parameter. We then introduce
a q-deformed chirality operator and show that its Uq(su(2))-invariant trace
gives the topological invariant index of the Dirac operator. We also explain
the construction and important role of the trace operation which is invariant
under the Uq(su(2)), which is the symmetry algebra of the q-deformed
fuzzy sphere. We briefly discuss chiral symmetry of the spinorial action on
the q-deformed fuzzy sphere and the possible role of this deformed chiral
operator in its evaluation using path integral methods.

PACS numbers: 11.10.Nx, 11.10.Kk, 02.20.Uw, 04.60.Nc

1. Introduction

The index of the Dirac operator is known to be related to topological invariance of the
underlying space where it is defined. The index of a self-adjoint operator A is defined as
the difference between the number of the zero modes of A and its adjoint A† [1]. Thus,
in the case of the Dirac operator, the index is a measure of the net chiral zero modes and
thus it is related to the chirality operator � and also to the chiral symmetry of the fermionic
field theories. The study of index theory of the Dirac operator has been of interest for the
understanding of chiral anomaly apart from its importance in understanding the topological
features of the underlying space. For fermions coupled to gauge fields, it is known that the
index can be expressed in terms of the field strength of gauge fields alone. The index is exactly
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the Pontryagin index which is a topological invariant quantity of the underlying space [1]. In
the Fujikawa mechanism [2], this topological term is added to the classical action so as to
make the partition function invariant under the chiral transformations which is a symmetry of
the classical theory [1–3].

The study of the index theorem for Dirac operators on different spaces is of interest not
only for the investigation of the topological features but also for the understanding of chiral
symmetry. This relation between the zero modes, topological charge of the underlying space
and chiral anomaly have been analysed for Dirac operators on various spaces such as two
sphere and fuzzy sphere [4–8].

In this paper we obtain the index theorem for a recently constructed [9] Dirac operator on
the q-deformed fuzzy sphere. An important feature of this Dq is its invariance under the action
of Uq(su(2)). Such symmetry plays a determinant role in the computation of the spectrum of
Dq . The eigenfunctions of Dq obtained in [9] can be classified into ± chiral subspaces using
the chirality operator �. We show a possible modification of the chirality operator obtained
in [9] and this deformed chiral operator �̃ also splits the spinor space into ± chiral subspace
and reduces to chiral operator on fuzzy sphere in the limit q → 1. Using relation of the index
of Dq to the trace of the chirality operator, we explicitly find the index of Dq . In obtaining
this, we show the important role played by the Uq(su(2)) invariant trace. We show that the
trace of the chirality operator gives a relation between q-dimension of the eigenspace of the
zero modes of Dq and the topological index of the spinor field. We then calculate the index
using the deformed chirality operator �̃. We observe that the indices obtained from chirality
operator � as well as deformed chirality operator �̃ have the proper limit with q → 1.

The relation between Hopf algebra (also known as quantum groups) and noncommutative
spaces is a well-established matter. In particular, the geometrical and topological aspects
of these spaces have been studied in [10, 11]. The construction of field theories on
noncommutative geometries with underlying symmetry being Uq(su(2)) or its quantum dual
SU(2)q has been explored in [12].

The study of field theory models on noncommutative space in general and on fuzzy S2 and
S2

qF in particular, are of importance as they provide alternate, finite dimensional, regularized
models. These models may have advantages such as the absence of fermion doubling problem
which plague the usual lattice formulation [13]. Attempts to construct gauge field theories
on such manifolds have also been undertaken [14]. We hope that the understanding of the
index theory and chiral invariance in these models (à la Fujikawa mechanism) can be helpful
in providing us valuable hints in the construction of gauge theories on S2

qF .
The q-deformed fuzzy sphere S2

qF (N) is described by a finite dimensional matrix algebra
and carries an action of Uq(su(2)). The number N which fixes the dimension of the matrices
is called the fuzzy cut-off parameter. In the limit q → 1, this reduces to the usual fuzzy sphere
defined as the matrix algebra invariant under su(2).

In other words, Uq(su(2)) is the symmetry of the q-deformed fuzzy sphere just as su(2) is
the symmetry of the usual fuzzy sphere. We can describe Uq(su(2)) as the algebra generated
by the operators J± and K ≡ qJ3 , where q can be a positive real number or a root of unity

(i.e., q = e
2π i
p , with p being a positive number) such that the operators satisfy the relations

[J+, J−] = K − K−1

q
1
2 − q− 1

2

and KJ±K−1 = q±1J±. (1)

Here we used the definition of q-number of x

[x] ≡ [x]q = q
x
2 − q− x

2

q
1
2 − q− 1

2

. (2)
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Uq(su(2)) being a Hopf algebra [15], the Hopf algebra structures, namely, co-product �,
antipode S and co-unit ε of Uq(su(2)) are given by

�(J±) = J± ⊗ K
1
2 + K− 1

2 ⊗ J±, �(K) = K ⊗ K (3)

S(J±) = −K
1
2 J±K− 1

2 , S(K) = K−1 (4)

ε(J±) = 0, ε(K) = ε(I) = 1, (5)

where [n]q! = [n]q[n−1]q · · · [1]q . Observe that the Hopf algebra structures are not preserved
by q ↔ q−1. We, thus, have two Hopf algebras Uq(su(2)) and Uq−1(su(2)).

This paper is organized as follows. In section 2, we recall the construction of the spinor
module and its chiral decomposition, Dirac operator and its spectrum, on fuzzy sphere. We
also show the validity of index theorem for fuzzy sphere Dirac operator here. In section 3, we
summarize the essential details of the q-deformed spinor module and its chiral decomposition,
Dirac operator and its spectrum for the q-deformed fuzzy sphere which we will be using later.
Here we also provide details about the Uq(su(2))-invariant trace, which will be crucial for
our later discussions. In section 4 we present our main result, namely the derivation of the
index theorem for the Dirac operator Dq on S2

qF . Here we show that the trace of the chirality
operator � relates the q-dimension of the eigenspace of Dq to the topological index of the
spinor field and also to the fuzzy cut-off. We then define a q-deformed chirality operator �̃

and show that its trace gives the topological invariant index of Dq . We conclude in section 5
with comments about the important role of Uq(su(2))-invariant trace and its relevance to the
chiral anomaly of the theory defined on S2

qF .

2. Dirac operator on the fuzzy sphere

In this section, we briefly recall the essential features of this Dirac operator and its spectrum
on fuzzy sphere [16] and show the validity of the index theorem.

The Dirac operator on the fuzzy sphere maps the su(2) spinor module
(
SJ

k

)
to itself. The

spinorial field belonging to this spinor module SJ
k is defined as

� = �+
(
a
†
i , ai, b

†, b
)

+ �−(
a
†
i , ai, b

†, b
) = f

(
a
†
i , ai

)
b + g

(
a
†
i , ai

)
b†, (6)

where a
†
i , ai, i = 1, 2, are two sets of bosonic creation and annihilation operators, b†, b is a

set of fermionic creation and annihilation operators ({b, b†} = 1), and the functions �± can
be written as a linear combination of monomials with fixed topological index 2k ∈ Z. Thus
we have

�± =
∑

m1,m2,µ,n1,n2,ν

cm1,m2,µ,n1,n2,νa
†m1
1 a

†m2
2 b†µa

n1
1 a

n2
2 bν, (7)

where m1,m2, n1, n2 are non-negative integers and µ, ν = 0, 1, µ + ν = 1 satisfying m1 +
m2 + µ � M,n1 + n2 + ν � N,M − N = 2k apart from the condition m1 + m2 +
µ − n1 − n2 − ν = 2k. We also have M + N = 2J which is the fuzzy cut-off parameter.
Some properties we have to bear in mind concerning these spinorials �± are

• they map the Fock space Fµ

N to the Fock space Fν
M . These Fock spaces are Hilbert spaces

of representations of su(2) and are given by

|n1, n2; ν〉 = 1√
n1!n2!

a
†n1
1 a

†n2
2 b†ν |0〉, n1 + n2 + ν = N. (8)
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• The bosonic parts of the spinor �, i.e., f and g in (6), are tensor representations with even
dimensions of U(su(2)). Therefore, the angular momentum number l of these operators
are half-integers 2s+1

2 , where s ∈ Z. Further, the bosonic operator f can be written as a
M
2 ⊗ (N−1)

2 matrix, and the bosonic operator g can be written as a (M−1)

2 ⊗ N
2 acting on

the column vector representation of the Fock space (8). Thus f and g can be written in
terms of the tensor operators belonging to the half-integer representations

M

2
⊗ N − 1

2
=

∣∣∣∣k +
1

2

∣∣∣∣ ⊕ · · · ⊕
(

J − 1

2

)
(9)

and
M − 1

2
⊗ N

2
=

∣∣∣∣k − 1

2

∣∣∣∣ ⊕ · · · ⊕
(

J − 1

2

)
(10)

respectively where J = M+N
2 .

• On the spinorial module SJ
k we define the chirality operator as

�� = −[b†b,�], (11)

which has ±1 eigenvalues. We denote the respective eigenspaces as SJ±
k .

• The spinorial module is formed by the linear combination of vectors belonging to the
half-integer spin spaces, �

j

J,k+ 1
2 ,m

which can be obtained by the repeated action of J+

(using the co-product) on

�
j

J,k+ 1
2 ,−j

= Na
†(j+k+ 1

2 )

2 a
(j−k− 1

2 )

1 . (12)

This spinor module can be splitted into positive chiral and negative chiral subspaces using
the above �. Thus we have

SJ
k = SJ+

k ⊕ SJ−
k . (13)

Now the Dirac operator which maps the spinor module to itself and also anti-commutes with
� is defined using two operators K± and acts on � as

D� = K+� + K−�. (14)

Here K± are operators mapping SJ±
k to SJ∓

k . In terms of the operators a
†
i , ai, b

†, b we write
the action of K± as

K+� = ba
†
2�a

†
1b − ba

†
1�a

†
2b (15)

K−� = b†a1�a2b
† − b†a2�a1b

†. (16)

We can easily check that with the above definitions, the eigenfunctions of the Dirac

operator are �
j±
J,k,m = 1√

2

[
�J,k+ 1

2 ,mb±�J,k+ 1
2 ,mb†] with eigenvalues

√(
j + 1

2 + k
)(

j + 1
2 − k

)
.

The |M − N | zero modes are

�
m1m2
+0 = N1a

†m1
1 a

†m2
2 b† (17)

�
n1n2
−0 = N2a

n1
1 a

n2
2 b, (18)

where Nα, α = 1, 2, are proportionality constants and allowed value of topological index 2k

for the above zero modes are m1 + m2 + µ > 0 and n1 + n2 + ν < 0 respectively and for both
these zero modes, the spin j = |k| − 1

2 . Thus it is clear that the number of zero modes are
2j + 1 = 2|k| which is equal to |M − N | [16]. It is clear that the trace of � restricted to the
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space of these zero modes of the Dirac operator will count the net chiral zero modes since
each of the ± chiral zero modes will have ±1 as eigenvalues under the chiral operator. We
have seen that this number is equal to 2k ∈ Z which is the topological index of the spinor field
by construction. Thus we see here that the index theorem is satisfied by the Dirac operator
defined above on fuzzy sphere.

D and � as operators on the U(su(2))-module SJ
k fulfil the conditions for the index

theorem stated above and they are invariant with respect to su(2). The su(2) invariant trace
is given by the usual trace on the module SJ

k and it is this trace we use in evaluating the index
of the Dirac operator, D.

3. Uq(su(2)) invariant Dirac operator Dq

In this section we present a Uq(su(2)) invariant Dirac operator Dq defined on q-deformed
fuzzy sphere. The Dq and its spectrum were obtained in [9]. One of the interesting aspects of
the spectrum of this Dirac operator is the novel double degeneracy for the case where q is root
of unity. Also in this case, we showed that there is a natural cut-off introduced by the root of
unity. We now briefly recall the main points of the derivation of Dq which are necessary for
the derivation of the index theorem.

Tensor representations of Uq(su(2)). A tensor representation of a Hopf algebra is a
representation of this algebra on a tensor product of two vector spaces through the use of
the co-product. Therefore, in the present case, if Hl and H∗

l are a Uq(su(2)) irreducible
representation and its dual, then the tensor representation on the space Hl ⊗ H∗

l is given by

ρ⊗(a)Hl ⊗ H∗
l ≡ ρ ⊗ ρ̄(�(a))Hl ⊗ H∗

l ⊂ Hl ⊗ H∗
l (19)

for a ∈ Uq(su(2)) and ρ : Uq(su(2)) → Aut(Hl ) is a homomorphism of the algebra Uq(su(2))

to the algebra of automorphisms of Hl and ρ̄ : Uq(su(2)) → Aut(H∗
l ) is also a homorphism

of algebra. If Hl is the irreducible representation of dimension 2l +1, then we see immediately
that Hl ⊗H∗

l is not irreducible. However, if q is real and positive it can always be decomposed
into a direct sum of irreducible representations, i.e.,

Hl ⊗ H∗
l =

2l⊕
j=0

Hj , (20)

where Hj are the irreducible representations of dimension 2j + 1. Note that with additional

conditions, such a decomposition is possible for q being root of unity also. For q = e
2π i
p , we

restrict ourselves to irreducible nilpotent (or classical) representations3, in the sense that the
eigenvalues of (J+)

p, (J−)p are both zero, then there is an upper bound for l in equation (20),
which is lmax = p−1

2 .

The tensor representation has for basis the set {Tjk}2l,j

j=0,k=−j . We also denote the angular
momentum quantum number j as the rank of the tensor. The action of the algebra on these
tensors and their eigenvalues are given by

ρ⊗(J±)Tjk = J±TjkK
− 1

2 − K− 1
2 TjkK

1
2 J±K− 1

2 =
√

[j ± k + 1][j ∓ 1]Tjk±1,

ρ⊗(K)Tjk = KTjkK
−1 = qkTjk.

Observe that these tensors act as operators on Hl .

3 If q is a root of unity there are two types of representations: (i) nilpotent, which can be related to su(2) irreducible
representations; (ii) cyclical, which is a new type of representation with no analogue to su(2).
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We also define the dual tensor representation. These are representations ρ̄⊗ ≡ ρ̄ ⊗ ¯̄ρ. We
denote the irreducible basis of this dual representation by T

‡
jk . The relation between T

‡
jk and

Tjk is given by

T
‡
jk = (−1)−kq

k
2 Tj−k. (21)

It is important to note that using these tensor operators with rank j = 1
2 , we can construct

the tensors of higher ranks using the q-Clebsch–Gordan coefficients [15] (Therefore it is
enough to show the results explicitly for the q-tensor operators with j = 1

2 ).

Let us denote by A
†
i , Ai , with i = 1, 2, two sets of q-bosonic creation and annihilation

operators. These operators satisfy the following relations:

AiA
†
i − q

1
2 A

†
iAi = q

−Ni
2 (22)[

Ni,A
†
i

] = A
†
i (23)

[Ni,Ai] = −Ai, (24)

where A
†
iAi = [Ni] and Ni is the number operator. The q-bosonic operators and the number

operator satisfying these relations are known as q-Heisenberg algebra.
We can write the tensor operators with rank j = 1

2 [15] in terms of these q-bosonic
operators

α
†
1 ≡ T 1

2
1
2

= A
†
1q

− N2
4 (25)

α
†
2 ≡ T 1

2 − 1
2

= q
N1
4 A

†
2 (26)

and the dual representation (21) of these tensors as

α1 ≡ T
‡
1
2 − 1

2
= A1q

− N2+1
4 (27)

α2 ≡ T
‡
1
2

1
2

= −q
N1+1

4 A2. (28)

The set of operators α
†
i , αi satisfies

α
†
1α

†
2 = q− 1

2 α
†
2α

†
1 (29)

α1α2 = q
1
2 α2α1 (30)

α
†
1α2 = α2α

†
1 (31)

α1α
†
2 = α

†
2α1. (32)

Spinor module. The spinor module S is made of half-integer angular momentum tensor
operators combined with a set of fermionic creation and annihilation operators b†, b. This set
of fermionic operators is the usual ones, i.e., {b, b†} = 1. A basis of this spinorial module is a
monomial of the form

α
†m1
1 α

†m2
2 b†µα

n1
1 α

n2
1 bν ∝ A

†m1
1 A

†m2
2 b†µA

n1
1 A

n2
1 bν (33)

where the proportionality constant would involve q and Nα . In the above m1,m2, n1, n2

are non-negative integers and µ = ν = 0, 1, µ + ν = 1. Also m1 + m2 + µ � M and
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n1 + n2 + ν � N,M − N = 2k,m1 + m2 + µ − n1 − n2 − ν = 2k. We also have M + N = 2J

which act as the fuzzy cut-off parameter. Similar to the previous section, we define the
spinorial fields as

� = �+
(
A

†
i , Ai, b

†, b
)

+ �−(
A

†
i , Ai, b

†, b
) = f

(
A

†
i , Ai

)
b + g

(
A

†
i , Ai

)
b†, (34)

such that

�± =
∑

m1,m2,µ,n1,n2,ν

cm1,m2,µ,n1,n2,νA
†m1
1 A

†m2
2 b†µA

n1
1 A

n2
2 bν, (35)

where cm1,m2,n1,n2 are complex numbers multiplied by factors involving q and Nα . The bosonic
part of � in equation (34), i.e., f and g can be expressed in terms of the spin-half tensors
belonging to M

2 ⊗ (N−1)

2 and (M−1)

2 ⊗ N
2 respectively and can be decomposed into the direct

sum of IRR of half-integer spins as shown in equations (9) and (10). The spinorial fields �

are built by taking the linear combinations of the operators belonging to these spin-half spaces
�

j

J,k+ 1
2 ,m

, where the lowest weight state is given by

�
j

J,k+ 1
2 ,−j

= (
A

†
2q

N1
4
)(j+k)(

A1q
− N2+1

4
)(j−k)

. (36)

q-Deformed Dirac operator. The chirality operator is defined as in the usual su(2) case

�q� ≡ �� = −[b†b,�], (37)

where the subscript q is used to distinguish it from the chirality operator on fuzzy sphere and
for comparison of results in the S2

qF case to the usual fuzzy one. This chirality operator splits
the Uq(su(2)) spinor module into ±-chiral subspaces.

As in the usual su(2) case we construct auxiliary operators K±, which map ± chiral
subspace to ∓ chiral subspace. We require also that these operators be invariant with respect
to Uq(su(2)). In [9], it was shown that the operators that fulfil these conditions are

K+� = q− k−m
4 K− 1

2 b
[
A

†
1�A

†
2q

k
2 − A

†
2�A

†
1

]
b (38)

K−� = q− k−m
4 b†[A1�A2q

k
2 − A2�A1

]
b†K− 1

2 . (39)

The q-deformed fuzzy Dirac operator Dq is defined by

Dq� = K+� + K−� (40)

and thus Dq anti-commutes with the chirality operator �q . It is easy to see that the zero modes
of this q-Dirac operator are given by [9]

�
m1m2
0+ = N1A

†m1
1 A

†m2
2 b† (41)

�
n1n2
0− = N2A

n1
1 A

n2
2 b, (42)

where Nα , with α = 1, 2, are normalization constants and they involve factors of q and
the number operators Nα . These zero modes correspond to the angular momentum number
j = |k| − 1

2 . The number of these zero modes is given by |M − N | = 2j + 1 = 2|k|. The

non-zero eigenvalues of this Dirac operator are
√[

j + 1
2 + k

][
j + 1

2 − k
]

and corresponding
eigenfunctions are

�
j±
J,k,m = 1√

2

[
�J,k+ 1

2 ,mb ± �J,k+ 1
2 ,mb†], (43)
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where �J,k± 1
2 ,m is obtained from equation (36). Here we note that the eigenvalues are real.

This is true even for the case of q = e
2π i
p provided 2l + 1 < p which is a constraint one

naturally introduce on the fuzzy cut-off parameter [9]. This condition is also needed to
ensure the positivity of the inner product as explained in the next section. The reality of the
eigenvalues clearly shows that our Dirac operator is self-adjoint as required. We also note that
the chirality operator � anti-commutes with the Dirac operator and it splits the spinor module
into ±-chiral subspaces.

4. Index theorem for Dq

In the previous section we have presented the Uq(su(2)) invariant Dirac operator which anti-
commutes with a chiral operator �q ≡ � and we have given its zero modes [9]. Both Dq

and �q act on a Uq(su(2)) spinorial module S. In order to apply the index theorem to these
operators we have to first define a Uq(su(2))-invariant trace which is also essential in showing
that Dq is self-adjoint.

Uq(su(2))-invariant trace. A trace acting on operators of a Hopf algebra module V is said
to be invariant if it satisfies

Tr(ρ⊗(�(a))T̂ ) = ε(a) Tr(T̂ ), (44)

where ε(a) is the co-unit of the element a of the Hopf algebra and T̂ is an element of vector
space V ⊗ V ∗.

We can easily see that since the co-product of Uq(su(2)) is deformed, the above condition
for the usual trace on the Uq(su(2))-module Hl is not satisfied. In order to have an invariant
trace on a representation Hl , we need to deform the trace as well. The general recipe to
construct this deformed trace, which is called q-trace here, is given in [17]. There it is shown
that the usual trace is a linear functional on the space Hl ⊗ H∗

l . However, in general, for
quasi-triangular Hopf algebras this trace is not invariant. So a new trace is defined to be a
linear functional on the space H∗∗

l ⊗ H∗
l . It can be shown that H∗∗

l  Hl as a representation
for these quasi-triangular Hopf algebras.

In the present case of Uq(su(2)), the equivalent map Hl ⊗ H∗
l to H∗∗

l ⊗ H∗
l is given by

multiplication by the matrix representation of the generator K = qJ3 , i.e., the tensor basis
Tlm ∈ Hl ⊗ H∗

l goes to K · Tlm ∈ H∗∗
l ⊗ H∗

l . Thus, we define the q-trace, denoted by Trq , as

Trq(Tlm) = Tr(KTlm) (45)

where on the right-hand side we have the usual matrix trace [7]. Now, one can easily check
the invariance of this trace with respect to Uq(su(2)). Indeed

Tr( ¯̄ρ ⊗ ρ̄(�(a))(KTlm)) = ε(a) Tr(KTlm).

Observe that we have to consider the proper representation with double bar in the first term of
the tensor product. We also note that ¯̄ρ(a) = ρ(S2(a)), S being the antipode.

In the space Hl ⊗ H∗
l we can define a positive definite inner product using the q-trace as

(A,B) = Trq(A
‡B), (46)

where A,B ∈ Hl ⊗ H∗
l and A‡ is in the dual of Hl ⊗ H∗

l .
It can be easily seen that the reality condition (A,B) = (B,A) is satisfied for the case of

q being real. But for q being root of unity, it is satisfied only if we define the inner product
with

A� = K−1A‡, (47)
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such that A�� �= A and

(A,B) = Trq(A
�B) = Tr(A‡B), (48)

where on the right-hand side Tr is the usual trace. Thus we see that the reality condition is
satisfied for q being root of unity also. Further we observe that the positivity of this inner

product is only satisfied if 2l + 1 < p, where q = e
2π i
p .

Thus we have now defined Uq(su(2))-invariant trace which allows one to define the self-
adjoint of a given operator and are in a position to evaluate the trace of the chirality operator
on S2

qF and obtain the index theorem.

Index theorem for Dq . The Uq(su(2)) invariant self-adjoint Dirac operator Dq and the chiral
operator �q on q-deformed fuzzy sphere do satisfy all the requirements listed for a generic
self-adjoint operator in section 2. We have also presented a q-trace (45) and the definition
of self-adjointness with respect to this new trace. Now, we are in position to apply the index
theorem to the operator Dq . We first calculate the q-trace of � and then the q-trace of a
deformed operator �̃, which we will define.

(1) Invariant trace of chiral operator (�q) and index. First we consider chirality operator
defined on the q-deformed fuzzy sphere given in equation (37) to derive the index. Using
the definition of the invariant trace and zero modes we get

Trq,D=0(�q) = [n+] − [n−]. (49)

This can be re-expressed using identities involving the q-numbers [15] as

[n+] − [n−] = [n+ + n−]
[

(n+−n−)

2

]
[

(n++n−)

2

] . (50)

Since n+ − n− is the number of net chiral zero modes of Dq which is equal to 2k and
n+ + n− = 2J (2J = M + N is the fuzzy cut-off parameter), we get

Trq,D=0(�q) = [2J ][k]

[J ]
. (51)

Observe that when q → 1, we get Tr(�) = 2k which is the correct result in this limit.
Thus we observe that unlike in the case of usual fuzzy sphere, here the trace of �q gives
q-number of the topological charge multiplied by factors which depend on the sum of n±.
Thus we note that the trace of �q does not give just the count of net chiral zero modes in
the case of S2

qF .
The q-trace of the identity operator on a vector space is also known as the q-dimension or
quantum dimension [17, 18] of this vector space. This quantity plays an important role
in the representation theory of quantum groups [18]. Therefore, we can see the left-hand
side of equation (51) as the difference of the q-dimensions of the subspaces of positive and
negative chiralities of the spinor module S, respectively. The right-hand side is a quantity
depending on the topological number k of the spinorial field. We can thus consider a
generalization of the index theorem for the Dirac operator on the q-deformed sphere as

q Index D ≡ q dim(Ker D) − q dim(Ker D†), (52)

where q dim(Ker) is the q-dimension of the space of zero modes of the respective
operators. Then, equation (51) can be written as

q Index D = [2J ][k]

[J ]
. (53)

Here we note that the q-index depends on the fuzzy cut-off parameter 2J = M + N . This
novel feature of the q-deformed fuzzy sphere is absent in the usual fuzzy sphere where
the fuzzy cut-off is not known to have any effect on the topological properties.
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(2) Invariant trace of deformed chiral operator (�̃) and index. Now we consider a deformed
chirality operator �̃ = K−1�. Since DK = KD we have DK−1� + K−1�D = 0.
Though this deformed chiral operator K−1� is not an involution ((K−1�)2 �= 1), we
note that it also splits the spinor module into ± chiral subspaces and in the limit q → 1,
it correctly reduces to the chirality operator on S2

F as required. Due to the K−1 factor,
when acted on the chiral spinors, it picks up an extra q−m factor, apart from the ±1. This
deformed chirality operator acts on a spinor as �̃� = −�(q−J3)[b†b,�]. For instance,
�̃�

j±
J,k,m = ±q−m�

j±
J,k,m. Thus (�̃)2 acting on �

j±
J,k,m gives q−2m�

j±
J,k,m. This still split

the spinor module into ± chiral subspaces. With this deformed chirality operator we find
that

Trq,D=0(K
−1�) = n+ − n− = 2k. (54)

Thus we see that the trace of the deformed chiral operator does give the net number
of chiral zero modes as in the usual case. We also know that by construction [9] this
difference in the number of ± chiral zero modes is equal to the topological index 2k of
the spinorial field. Since here the trace has no dependence on fuzzy cut-off or q, we are
guaranteed to get the correct result in the limit of S2

F and also in the limit of continuum
sphere.

Thus we see that the trace of chirality operator � as well as that of deformed chiral
operator �̃ do reproduce the expected result in the limit of q → 1. But for generic q, it is
�̃ which gives the count of net chiral zero modes. Thus it seems that the deformed chiral
operator may be more natural and of more use in the study of chiral anomaly on deformed
fuzzy sphere.

5. Conclusion

In this paper we have obtained the index of the Dirac operator defined on q-deformed fuzzy
sphere S2

qF . Since the index is a measure of the net chiral zero modes, we calculate it by
evaluating the trace of the chirality operator defined on S2

qF . For this calculation we have used
the Uq(su(2)) invariant trace [7, 17]. We have shown that the trace of chiral operator � is
proportional to the [n+ − n−]q . The proportionality constant depends on the q-number of the
fuzzy cut-off parameter. This situation is strikingly different from the undeformed fuzzy sphere
where the cut-off parameter does not affect the topological invariants of the manifold. Using
the explicit form of zero modes of the Dirac operator Dq on S2

qF , we exhibit that n+ − n− = 2k,
where 2k ∈ Z is the topological index of the spinor field. Thus, with this chirality operator, we
get the index of Dirac operator proportional to the q-number of the topological index. Since
the Uq(su(2))-invariant trace of the chirality operator is the q-dimension of the eigenspace of
Dq , this shows that the q-dimension of the eigenspace is related to the topological index of
the spinor field. Since the q-number reduces to usual number in the limit q → 1, we see that[

n+−n−
2

]
q

→ k in this limit as required. Here we have seen that the proportionality constant
depends on the sum of total chiral zero modes and in the limit this proportionality constant
becomes unity. Then we have shown that a deformed chirality operator can be used in place
of � and its Uq(su(2))-invariant trace is just 2k as in the usual case. Though this deformed
chiral operator �̃ is not an involutive operator, it does split the spinor module into ± chiral
subspace and also reduces to the correct chiral operator in the q → 1 limit.

Using the Uq(su(2))-invariant trace, we can construct the invariant spinorial action on
q-deformed fuzzy sphere S2

qF . For this, we can use q-Clebsch–Gordan techniques and combine
�,Dq� and their duals defined using the invariant trace. Therefore terms such as �‡� and
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�‡Dq� are invariants with respect to Uq(su(2)) (For showing these we use equation (21)).
Thus the Uq(su(2)) invariant spinorial action is finally given by

S = 2πR2

[N + 1]
Trq(�̄Dq� + V (�̄�)), (55)

where, �̄ = �‡, see (46), or �̄ = ��, see (48), depending on whether q is real or root of
unity, [N + 1] is the normalization factor, R is the radius of the underlying sphere and V (�̄�)

is a potential function on the Uq(su(2)) invariant �̄�. It can be easily seen that the above
action is also invariant under chiral transformations for the massless case. Now, one may ask
if the chiral symmetry of the action is still a symmetry of the corresponding quantum theory.

Consider the chiral invariant action S = S|V =0 where the action S is given in
equation (55). The corresponding partition function is

Z =
∫

D�̄D� e−S . (56)

It is not invariant with respect to the chiral transformations4

� : � → eiα��, � : �̄ → � eiα�, (57)

where α is a real parameter. As in the case of spinorial action in the commutative space we note
that the contributions from ± chiral non-zero modes to the Jacobian of chiral transformation
cancel each other. But the contribution coming from the zero modes does add up to give

D�̄D� → e|n+−n−|D�̄D�

= e2kD�̄D� (58)

which breaks the chiral symmetry of the quantum theory. We note here that the above
contribution to the integration measure is the same for the chiral transformations generated
by � as well as �̃. Thus we see that by defining an effective action with a counter-term that
cancels the above contribution, one can cancel the anomaly and retain the chiral invariance.
Since this new term has to be invariant under Uq(su(2)), we need to define this term using
Uq(su(2))-invariant trace. Also since the extra phase factor is just 2k and not proportional to
[k]q we see that the effective action depends on the deformed chirality operator �̃ rather than
the chirality operator �q . Thus we get the effective action to be

Seff = S − Trq(�̄K−1��). (59)

Therefore, the deformed chirality operator may be better suited for the study of spinor fields
and their actions on S2

qF .
In the commutative spaces, the new term in the effective action in equation (59) has been

expressed in terms of the gauge fields alone [1]. There have been some studies aiming in
the construction of gauge field theories on fuzzy sphere [14]. The path integral evaluation
of above term can lead to better understanding of the construction of gauge field action on
q-deformed fuzzy sphere as well as on fuzzy sphere.
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